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Black Box Machine Learning
Explainable AI: A hot topic for good reasons
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Black-box models

Interpretable vs Black Box
From interpretable to opaque and complex

Interpretable* Models

Source: https://christophm.github.io/interpretable -ml-book/tree.html

Source: http://neuralnetworksanddeeplearning.com/chap1.html

* Only interpretable if model is reasonably small, and if features are interpretable

Decision tree

Neural Network
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Post-hoc explanation:
ż>XÆX³´X X«z «XX³ «zŽ

Explanation Problems
From interpretable to opaque and complex

Ante-hoc explanation:
Transparant box design

Source: https://christophm.github.io/interpretable -ml-book/tree.html

Source: http://neuralnetworksanddeeplearning.com/chap1.html

Decision tree

Neural Network
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ÅComplex neural networks have 
over 1 BILLION weights!

ÅNot interpretable anymore

Transparency vs Explainability
The Human Factor

Source image: 
http://neuralnetworksanddeeplearning.com/chap1.html

ÅA neural network is transparent
ÅSimply look at the weights

An explanationis a presentation of (aspects of) 
the reasoning, functioning and/or behavior of 
a machine learning model in
human-understandable terms.

Explanation - definition from (Nauta et al. 2022)

Nauta, Meike, et al. "From anecdotal evidence to quantitative evaluation methods: A systematic 
review on evaluating explainable ai." arXiv preprint arXiv:2201.08164 (2022).
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ML Model Developers & Builders

ML Model Users

Domain-experts

Level of machine 
learningknowledge

Source: Hohman, F. M., Kahng, M., Pienta, R., & Chau, D. H. (2018). 
Visual analytics in deep learning: An interrogative survey for the next 
frontiers. IEEE transactions on visualization and computer graphics.
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8Why, what, how and who?

WHO The intended user
WHY The goal of your explanation
WHAT The problem you want to solve
HOW The type of explanation you want to use
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9The Need for XAI
Explainable Artificial Intelligence

Justify Control
Justify
Justifications for a certain outcome: 
getting insight into the underlying 
reasoning of a decision.

Control
C«TX³´ºJ«T «z º|X ´É´ºXªŻ´
behavior to identify previously 
unknown flaws.
Is the model right for the right 
reasons (no bias/discrimination)?

GDPR: When profiling takes place, a data 
ǎǳōƧŜŎǘ Ƙŀǎ ǘƘŜ ǊƛƎƘǘ ǘƻ άƳŜŀƴƛƴƎŦǳƭ 
ƛƴŦƻǊƳŀǘƛƻƴ ŀōƻǳǘ ǘƘŜ ƭƻƎƛŎ ƛƴǾƻƭǾŜŘΦέ 
Article 13 and 14, Regulation(EU) 
2016/679.
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Machine learning models trained to 
recognize skin cancer.

The model had learned shortcuts and was right for the wrong reasons!

Malignant

Patches replaced with skin

Patches inserted

18% misclassified as malignant

68% misclassified as benign
Data Set from International Skin Imaging Collaboration (ISIC) initiative

Meike Nauta, Ricky Walsh, Adam Dubowski and Christin Seifert: Uncovering and Correcting Shortcut Learning in Machine LearningModels for Skin Cancer Diagnosis. Diagnostics. 2022; 12(1):40.

Benign

Dataset is biased 
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11The Need for XAI
Explainable Artificial Intelligence

Justify Control

Discover Improve

Justify
Justifications for a certain outcome: 
getting insight into the underlying 
reasoning of a decision.

Control
C«TX³´ºJ«T «z º|X ´É´ºXªŻ´
behavior to identify previously 
unknown flaws.
Is the model right for the right 
reasons (no bias/discrimination)?

Discover
Machine learning algorithms already 
outperform humans on many tasks, such 
as playing the game of Go [1] and 
identifying cervical precancer [2]. Thus, 
explainable models can provide us with 
new knowledge. 

Improve
Using the explanations of the 
systems, users can make the 
system smarter. Human-in-the-
loop development: ongoing 
iteration and improvement 
between human and machine. 

[1] D. Silver et al., Mastering the game of go with deep neural networks and tree 
search," nature, vol. 529, no. 7587, p. 484, 2016.
[2] L. Hu et al., An observational study of deep learning and automated 
evaluation of cervical imagesfor cancer screening," JNCI: Journal of the National 
Cancer Institute, 2019.

GDPR: When profiling takes place, a data 
ǎǳōƧŜŎǘ Ƙŀǎ ǘƘŜ ǊƛƎƘǘ ǘƻ άƳŜŀƴƛƴƎŦǳƭ 
ƛƴŦƻǊƳŀǘƛƻƴ ŀōƻǳǘ ǘƘŜ ƭƻƎƛŎ ƛƴǾƻƭǾŜŘΦέ 
Article 13 and 14, Regulation(EU) 
2016/679.
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12Why, what, who and how?

WHY The goal of your explanation

WHAT The insight you would like to get
WHO The intended user
HOW The type of explanation you want to use
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13Classifying XAI methods
Classification framework

Nauta, Meike, et al. "From anecdotal evidence to quantitative evaluation methods: A systematic 
review on evaluating explainable ai." arXiv preprint arXiv:2201.08164 (2022).
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ArXiv (Jan 2022), under review

Classifying XAI methods
Our Work
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15Selection and Inclusion of Papers
Our Selection Process
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16XAI Website Launched

https://utwente -dmb.github.io/xai -papers
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https://utwente -dmb.github.io/xai -papers
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18Overview of XAI Methods
Our Findings

Source: Nauta, Meike, et al. "From Anecdotal Evidence to Quantitative 
Evaluation Methods: A Systematic Review on Evaluating Explainable AI." 
arXivpreprint arXiv:2201.08164 (2022).


