MIAI PhD

SECTOR: Higher Education Institution

LOCATION: France, Grenoble

RESEARCHER PROFILE:

- First stage researcher

INSTITUTION: Univ. Grenoble Alpes, University of Innovation

One of the major research-intensive French universities, Univ. Grenoble Alpes¹, enjoys an international reputation in many scientific fields, as confirmed by international rankings. It benefits from the implementation of major European instruments (ESRF, ILL, EMBL, IRAM, EMFL*). The dynamic ecosystem, grounded on a close interaction between research, education and companies, has earned Grenoble to be ranked as the 5th most innovative city in the world. Surrounded by mountains, the campus benefits from a natural environment and a high quality of life and work environment. With 7000 foreign students and the annual visit of more than 8000 researchers from all over the world, Univ. Grenoble Alps is an internationally engaged university.

A personalized Welcome Center for international students, PhDs and researchers facilitates your arrival and installation.

In 2016, Univ. Grenoble Alpes was labeled “Initiative of Excellence”. This label aims at the emergence of around ten French world class research universities. By joining Univ. Grenoble Alpes, you have the opportunity to conduct world-class research, and to contribute to the social and economic challenges of the 21st century ("sustainable planet and society", "health, well-being and technology", "understanding and supporting innovation: culture, technology, organizations" and "Digital technology").

* ESRF (European Synchrotron Radiation Facility), ILL (Institut Laue-Langevin), IRAM (International Institute for Radio Astronomy), EMBL (European Molecular Biology Laboratory), EMFL (European Magnetic Field Laboratory)

Key figures:

- 50,000+ students, including 7,000 international students
- 3,700 PhD students, 45% international
- 5,500 faculty members
- 180 different nationalities
- 1st city in France where it feels good to study and 5th city where it feels good to work
- ISSO: International Students & Scholars Office affiliated to EURAXESS

¹ https://edu.univ-grenoble-alpes.fr/en/
SUBJECT DESCRIPTION:

The Grand Challenge of this research activity is to enable the arrival of the third generation of Neural Networks, namely spiking ones. This will be achieved by the right combination of learning algorithms, large scale power efficient accelerators and industrial applications. This PhD thesis subject is tightly coupled with another one, more oriented on hardware friendly algorithms and applications (Title: “Spiking Neural Networks On Line Learning Strategies”).

Spiking Neural Networks (SNN) are seen as a Key building block for strongly improving the energy efficiency of current AI applications and opening up new possibilities (in terms of unsupervised learning, recurrent networks, probabilistic inference, etc.). In that respect, one of the key scientific challenges is to design a scalable and flexible SNN architecture: that architecture must be adaptable to different algorithms, to handle tasks such as inference and learning ones (online, supervised, unsupervised, probabilistic, etc.).

Neural networks being memory-intensive architectures, it is mandatory to implement all of the memory on die, in order to reach state-of-the-art energy efficiencies. This is why circuits will be designed and fabricated in hybrid nanoscale CMOS and Resistive RAM technology, enabling very high synaptic density.

The obtained circuits will be employed in embedded applications, in the industrial, health and automotive sectors.

The PhD student will join a multi-disciplinary team of machine learners, circuit designers and technologists, working on industrial, health and automotive Edge AI applications.

The PhD student will have access to state-of-the-art facilities, enabling it to tape-out circuits in advanced technology nodes.

The research work will consist in:

- Participating to the design and verification of basic computation kernels such as neurons, synaptic trees, computing clusters, learning clusters in hybrid RRAM/CMOS technologies
- Working on the scalable architectures, starting from high-level models (SystemC or SystemVerilog) to assess key parameters, e.g. latency, network bandwidth, memory capacity.
- Implementing the optimized architectures such as “near memory” with distributed memory modules or/and “in-memory” computing styles using target technology node
- Defining the API for the architecture, to render it programmable from Deep Learning frameworks, such as TensorFlow Lite for classification tasks

Expected skills

Technical: Analog/Digital integrated electronics (design, HDL modeling languages, CAD tools), Pyton/C/C++ and scripting. Knowledge about front end/back end, assembly language, machine learning algorithms, data science, etc.

Personal: Determination, perseverance, trustworthiness, autonomy, adaptability, initiative, good communication skills

Languages: English: at least B2 equivalent, excellent reading and writing level, good speaking level. Fluency in French is a plus but it is not mandatory.

ELIGIBILITY CRITERIA

Applicants must hold a Master’s degree (or be about to earn one) or have a university degree equivalent to a European Master’s (5-year duration).
Applicants will have to send an application letter in English and attach:
- Their last diploma and transcript of last 2 years scores.
- Their CV focusing on the technical topics developed and implemented in projects and labs
- A short presentation of their scientific project (2 to 3 pages max)
- Letters of recommendation are welcome.

Address to send application: alexandre.valentian@cea.fr; lorena.anghel@grenoble-inp.fr